Data Transformation for Decision Tree Ensembles
نویسنده
چکیده
18
منابع مشابه
Tree Space Prototypes: Another Look at Making Tree Ensembles Interpretable
Ensembles of decision trees have good prediction accuracy but suffer from a lack of interpretability. We propose a new approach for interpreting tree ensembles by finding prototypes in tree space, utilizing the naturally-learned similarity measure from the tree ensemble. Demonstrating the method on random forests, we show that the method benefits from two unique aspects of tree ensembles by lev...
متن کاملThe Investigation of Deep Data Representations Based on Decision Tree Ensembles for Classification Problems
A classification method based on deep representation of input data and ensembles of decision trees is introduced and evaluated solving the problem of vehicle classification and image classification with large number of categories.
متن کاملThe Utility of Randomness in Decision Tree Ensembles
The use of randomness in constructing decision tree ensembles has drawn much attention in the machine learning community. In general, ensembles introduce randomness to generate diverse trees and in turn they enhance ensembles’ predictive accuracy. Examples of such ensembles are Bagging, Random Forests and Random Decision Tree. In the past, most of the random tree ensembles inject various kinds ...
متن کاملRule and Tree Ensembles for Unrestricted Coreference Resolution
In this paper, we describe a machine learning system based on rule and tree ensembles for unrestricted coreference resolution. We use Entropy Guided Transformation Learning (ETL) and Decision Trees as the base learners, and, respectively, ETL Committee and Random Forest as ensemble algorithms. Our system is evaluated on the closed track of the CoNLL 2011 shared task: Modeling Unrestricted Coref...
متن کاملAn Experimental Study on Rotation Forest Ensembles
Rotation Forest is a recently proposed method for building classifier ensembles using independently trained decision trees. It was found to be more accurate than bagging, AdaBoost and Random Forest ensembles across a collection of benchmark data sets. This paper carries out a lesion study on Rotation Forest in order to find out which of the parameters and the randomization heuristics are respon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009